首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5369篇
  免费   842篇
  国内免费   1070篇
化学   4354篇
晶体学   59篇
力学   282篇
综合类   73篇
数学   730篇
物理学   1783篇
  2024年   6篇
  2023年   81篇
  2022年   109篇
  2021年   122篇
  2020年   201篇
  2019年   179篇
  2018年   138篇
  2017年   172篇
  2016年   238篇
  2015年   262篇
  2014年   313篇
  2013年   415篇
  2012年   460篇
  2011年   452篇
  2010年   398篇
  2009年   420篇
  2008年   415篇
  2007年   387篇
  2006年   353篇
  2005年   325篇
  2004年   284篇
  2003年   309篇
  2002年   259篇
  2001年   192篇
  2000年   158篇
  1999年   122篇
  1998年   80篇
  1997年   62篇
  1996年   85篇
  1995年   42篇
  1994年   45篇
  1993年   41篇
  1992年   36篇
  1991年   34篇
  1990年   24篇
  1989年   10篇
  1988年   9篇
  1987年   13篇
  1986年   12篇
  1985年   3篇
  1984年   2篇
  1983年   5篇
  1982年   3篇
  1981年   1篇
  1977年   1篇
  1973年   1篇
  1968年   1篇
  1959年   1篇
排序方式: 共有7281条查询结果,搜索用时 15 毫秒
101.
Li  Yi  Hou  Yanren  Rong  Yao 《Numerical Algorithms》2020,84(3):1019-1048
Numerical Algorithms - In this paper, we present a second-order decoupled scheme based on the artificial compression method for the time-dependent Stokes-Darcy equations. This method not only...  相似文献   
102.
The mechanism of aggregation-induced emission, which overcomes the common aggregation-caused quenching problem in organic optoelectronics, is revealed by monitoring the real time structural evolution and dynamics of electronic excited state with frequency and polarization resolved ultrafast UV/IR spectroscopy and theoretical calculations. The formation of Woodward–Hoffmann cyclic intermediates upon ultraviolet excitation is observed in dilute solutions of tetraphenylethylene and its derivatives but not in their respective solid. The ultrafast cyclization provides an efficient nonradiative relaxation pathway through crossing a conical intersection. Without such a reaction mechanism, the electronic excitation is preserved in the molecular solids and the molecule fluoresces efficiently, aided by the very slow intermolecular charge and energy transfers due to the well separated molecular packing arrangement. The mechanisms can be general for tuning the properties of chromophores in different phases for various important applications.  相似文献   
103.
104.
105.
106.
Self-shaping materials such as shape memory polymers have recently drawn considerable attention owing to their high shape-changing ability in response to changes in ambient conditions, and thereby have promising applications in the biomedical, biosensing, soft robotics and aerospace fields. Their design is a crucial issue of both theoretical and technological interest. Motivated by the shape-changing ability of Towel Gourd tendril helices during swelling/deswelling, we present a strategy for realizing self-shaping function through the deformation of micro/nanohelices. To guide the design and fabrication of selfshaping materials, the shape equations of bent configurations, twisted belts, and helices of slender chiral composite are developed using the variation method. Furthermore, it is numerically shown that the shape changes of a chiral composite can be tuned by the deformation of micro/nanohelices and the fabricated fiber directions. This work paves a new way to create self-shaping composites.  相似文献   
107.
Sulfur hexafluoride (SF6) gas has a quite high global warming potential and hence it is required that applying any substitute for SF6 gas. Much interest in the use of a mixture of helium and SF6 as arc quenching medium were investigated indicating a high performance of arc interruption. The calculated values of transport coefficients of mixtures of SF6–He mixtures, at high temperatures are presented in this paper: to the knowledge of the authors, related data have not been reported in the literature. The species composition and thermodynamic properties are determined by the method of Gibbs free energy minimization, using standard thermodynamic tables. The transport properties including electron diffusion coefficients, viscosity, thermal conductivity and electrical conductivity, are evaluated by using the Chapman–Enskog method expanded up to the third-order approximation (second-order for viscosity). Particular attention is paid to the collision integral database by the use of the most accurate and recent cross-sections or interaction potentials available in the literature. The calculations, which assume local thermodynamic equilibrium, are performed in the temperature range from 300 to 30,000 K for different pressures between 0.1 and 16 atm. An evaluation of the current interruption performance by adding He into SF6 is discussed from a microscopic point of view. The properties with regard to SF6–He mixtures calculated here are expected to be reliable because of the improved collision integrals employed.  相似文献   
108.
Network coding is an emerging telecommunication technique, where any intermediate node is allowed to recombine incoming data if necessary. This technique helps to increase the throughput, however, very likely at the cost of huge amount of computational overhead, due to the packet recombination performed (ie coding operations). Hence, it is of practical importance to reduce coding operations while retaining the benefits that network coding brings to us. In this paper, we propose a novel evolutionary algorithm (EA) to minimize the amount of coding operations involved. Different from the state-of-the-art EAs which all use binary encodings for the problem, our EA is based on path-oriented encoding. In this new encoding scheme, each chromosome is represented by a union of paths originating from the source and terminating at one of the receivers. Employing path-oriented encoding leads to a search space where all solutions are feasible, which fundamentally facilitates more efficient search of EAs. Based on the new encoding, we develop three basic operators, that is, initialization, crossover and mutation. In addition, we design a local search operator to improve the solution quality and hence the performance of our EA. The simulation results demonstrate that our EA significantly outperforms the state-of-the-art algorithms in terms of global exploration and computational time.  相似文献   
109.
110.
Synthetic polymers represent a modifiable class of materials that can serve as adjuvants to address challenges in numerous biomedical and medicinal chemistry applications including the delivery of siRNA. Polymer‐based therapeutics offer unique challenges in both synthesis and characterization as compared to small molecule therapeutics. The ability to control the structure of the polymer is critical in creating a therapeutic. Reported herein, are batch and flow polymerization processes to produce amphiphilic terpolymers through a Lewis acid BF3OEt2‐catalyzed polymerization. These processes focus on controlling reaction variables, which affect polymer structure in this rapid, exothermic, nonliving cationic polymerization. In addition to analytical characterization of the polymers, the in vivo activity of the polymer‐siRNA conjugates is also highlighted—demonstrating that the method of synthesis does affect the in vivo activity of the resulting polymer conjugate. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1119–1129  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号